Google przewidzi naszą śmierć

Rafał Tomaszewski
Rafał Tomaszewski
#Google
Opublikowano: 25 maja 2018 Aktualizacja: 20 lutego 2019

Szybki rozwój algorytmów sztucznej inteligencji daje coraz bardziej nieoczekiwane efekty. Technologiczny gigant Google stworzył model analityczny, którzy wykorzystując metodę deep learning, potrafi oszacować między innymi śmiertelność hospitalizowanych pacjentów.

W oparciu o duże zbiory danych (big data) zapisane w szpitalnych bazach prognozuje znacznie skuteczniej niż tradycyjne modele i narzędzia predykcyjne.

Miliardy rekordów pod lupą

Narzędzie analityczne przygotowane przez ekspertów Google’a do spraw rozwoju sztucznej inteligencji było w stanie poddać obróbce ponad 46 mld pojedynczych danych medycznych dotyczących ponad 216 tys. pacjentów zaledwie dwóch szpitali.

Dzięki wykorzystaniu najnowszych rozwiązań i procedur opartych na technologii machine learning i metodyce deep learning, narzędzie było w stanie oszacować, ile czasu dany pacjent powinien spędzić w szpitalu i jakie jest ryzyko tzw. readmisji, czyli nieplanowanego ponownego przyjęcia pacjenta do szpitala z podobnego powodu, jak poprzednio. W skrajnych przypadkach model Google’a potrafił oszacować nawet prawdopodobieństwo zgonu danego pacjenta.

Tak zwany EHR (ang. electronic health record), czyli elektroniczna dokumentacja medyczna, to jeden z cyfrowych standardów zachodniej służby zdrowia, zawierający dosłownie wszystkie dane o chorym. To potencjalnie tysiące różnych zmiennych, których uporządkowanie i analiza w oparciu o tradycyjne modele są zadaniami praktycznie niewykonalnymi. Zazwyczaj używane modele predykcyjne wymagają ogromnego wysiłku polegającego na ręcznym wyborze lub uspójnieniu odpowiednich zmiennych.

Deep Learning znacznie skuteczniejszy

– W dzisiejszych czasach coraz więcej decyzji zależy od analityki danych. Samo gromadzenie cyfrowych informacji mija się z celem, gdy nie można ich przekształcić w przydatne wnioski. Jak widać na przykładzie Google’a, modele analityczne i predykcyjne, które wykorzystują deep learning i machine learning, mogą stanowić rozwiązanie tego problemu. Dla każdej prognozy narzędzia takie potrafią w czasie rzeczywistym odczytać każdą informację, połączyć je w ciągi przyczynowo-skutkowe i oszacować, które dane są kluczowe dla analizy stanu zdrowia danego pacjenta – komentuje Adam Dzielnicki z Atmana, lidera polskiego rynku centrów danych.

Wyniki Google’a porównano ze wskaźnikami trafności tradycyjnych modeli predykcyjnych i okazało się, że narzędzie oparte na technologii wspieranej przez sztuczną inteligencję ma o ponad 10 procent wyższą skuteczność w ocenie śmiertelności pacjentów. Podobnie gdy chodziło o określenie okresu hospitalizacji. Wskaźniki były porównywalne tylko w przypadku potencjalnego powrotu pacjenta do szpitala.

W przypadku Google’a dane, które zostały poddane analizie, nie zostały w żaden sposób wyselekcjonowane przez człowieka. Sztuczna inteligencja samodzielnie oceniła, które dane są ważne w przypadku danego pacjenta.

– Wyniki te pokazują jak ogromny potencjał drzemie w technologiach kognitywnych. Narzędzia analityczne wykorzystujące deep learning nie zastąpią oczywiście doświadczonych lekarzy, ale mogą stanowić istotne wsparcie w ich pracy – mowa chociażby o skróceniu czasu realizacji procesów czy zmniejszeniu liczby potencjalnych błędów. Ma to ogromne znacznie choćby w tych obszarach, gdzie czas ma kluczowe znacznie dla efektywności organizacji. W służbie zdrowia stawką jest ludzkie życie – podkreśla Adam Dzielnicki z Atmana.

Technologie kognitywne na fali

Jak podają eksperci Deloitte w analizie „Cognitive technologies. A technical primer”, wydatki na wdrożenie technologii kognitywnych, takich jak np. deep learning czy sztuczna inteligencja, mogą w latach 2017-2021 wynieść nawet 200 mld dolarów. Jednym z głównych czynników, który napędza ten rozwój, jest szybko rosnąca liczba danych, które organizacje muszą przetwarzać.

– Informacji jest coraz więcej i to one stanowią niejako nową ropę naftową dla firm, napędzają ich działania. Organizacje muszą więc nauczyć się sprawnie i efektywnie analizować dane. Samodzielna ich obróbka to proces czasochłonny i trudny, dlatego można spodziewać się w najbliższych latach zwiększonych nakładów nie tylko na innowacyjne rozwiązania analityczne, ale także na infrastrukturę informatyczną, m.in. centra danych, które będą przechowywać cyfrowe informacje lub stanowić fundament chmur obliczeniowych – tłumaczy Adam Dzielnicki.

Zdaniem Deloitte’a inwestycje będą ponosić przedsiębiorstwa z wielu różnych branż: od bankowości, przez handel i przemysł wytwórczy, aż po służbę zdrowia. Sam sektor ochrony zdrowia jest niezwykle interesujący od strony informatyzacji i digitalizacji. Według IDC to najszybciej rosnący rynek IT spośród wszystkich branż. Do roku 2019 ma on rosnąć w tempie około 5,5% rok do roku.


Tekst chroniony prawem autorskim. Każdorazowe kopiowanie wymaga zgody redakcji.

Pokaż komentarze (0)

google-przewidzi-nasza-smierc